TCN Protocol

Temporary Contact Numbers Protocol
Developed byTCN Coalition, incl. Covid Watch[1] and CoEpi[2]
IntroducedMarch 17, 2020 (2020-03-17)[3]
IndustryExposure Notification
Physical range~10 m (33 ft)[4]

The Temporary Contact Numbers Protocol, or TCN Protocol, is an open source, decentralized, anonymous exposure alert protocol developed by Covid Watch[1] in response to the COVID-19 pandemic.[5][6][7][8] The Covid Watch team, started as an independent research collaboration between Stanford University and the University of Waterloo was the first in the world to publish a white paper,[9] develop,[3] and open source[10] fully anonymous Bluetooth exposure alert technology in collaboration with CoEpi[2] after writing a blog post[11] on the topic in early March.

Covid Watch's TCN Protocol received significant news coverage[12] and was followed by similar decentralized protocols in early April 2020 like DP-3T, PACT,[13] and Google/Apple Exposure Notification framework. Covid Watch then helped other groups like the TCN Coalition and MIT SafePaths[14] implement the TCN Protocol within their open source projects to further the development of decentralized technology and foster global interoperability of contact tracing and exposure alerting apps, a key aspect of achieving widespread adoption.[15] Covid Watch volunteers and nonprofit staff also built a fully open source mobile app for sending anonymous exposure alerts first using the TCN Protocol[16] and later using the very similar Google/Apple Exposure Notification Framework (ENF).[17][18]

The protocol, like BlueTrace and the Google / Apple contact tracing project, use Bluetooth Low Energy to track and log encounters with other users.[19][20][21] The major distinction between TCN and protocols like BlueTrace is the fact the central reporting server never has access to contact logs nor is it responsible for processing and informing clients of contact.[22][23] Because contact logs are never transmitted to third parties, it has major privacy benefits over approaches like the one used in BlueTrace.[24][25][26] This approach however, by its very nature, does not allow for human-in-the-loop reporting, potentially leading to false positives if the reports are not verified by public health agencies.[19]: p. 6 

The TCN protocol received notoriety as one of the first widely released digital contact tracing protocols[15][27][28] alongside BlueTrace,[29] the Exposure Notification framework, and the Pan-European Privacy-Preserving Proximity Tracing (PEPP-PT) project.[30][31] It also stood out for its incorporation of blockchain technology,[32] and its influence over the Google/Apple project.[33][20][34][35][36]

  1. ^ a b "Covid Watch". Covid Watch. 2020-02-19. Archived from the original on 2020-08-06. Retrieved 2020-06-02.
  2. ^ a b "CoEpi website". CoEpi. 2020-03-17. Retrieved 2020-03-17.
  3. ^ a b "First implementation of anonymous exposure alert protocol". GitHub. Retrieved 2020-03-17.
  4. ^ Sponås, Jon Gunnar. "Things You Should Know About Bluetooth Range". blog.nordicsemi.com. Retrieved 2020-04-18.
  5. ^ University, Stanford (2020-04-09). "Stanford researchers help develop privacy-focused coronavirus alert app". Stanford News. Retrieved 2020-04-22.
  6. ^ "One victim of COVID-19 pandemic may be privacy rights". JapanTimes. 2020-03-31. Archived from the original on 2020-03-30. Retrieved 2020-03-31.
  7. ^ "What privacy-preserving coronavirus tracing apps need to succeed". VentureBeat. 2020-04-13. Retrieved 2020-04-18.
  8. ^ Shendruk, Amrita Khalid, Amanda (16 April 2020). "How Bluetooth could bring digital contact tracing for Covid-19 to billions". Quartz. Retrieved 2020-04-19.{{cite web}}: CS1 maint: multiple names: authors list (link)
  9. ^ "Covid Watch White Paper". Covid Watch. 2020-03-20. Archived from the original on 2021-10-15. Retrieved 2020-03-20.
  10. ^ "Covid Watch Github". Github. 2020-03-17. Retrieved 2020-03-17.
  11. ^ "Covid Watch Bluetooth Primer Blog Post". Internet Archive. 2020-03-07. Archived from the original on 2020-04-10. Retrieved 2020-03-07.
  12. ^ "Covid Watch News Coverage". Covid Watch. 2020-06-02. Archived from the original on 2020-08-03. Retrieved 2020-06-02.
  13. ^ "First MIT PACT paper" (PDF). PACT MIT. 2020-04-08. Archived from the original on 2020-04-09. Retrieved 2020-04-08.
  14. ^ "Bluetooth signals from your smartphone could automate Covid-19 contact tracing while preserving privacy". MIT News. 2020-04-08. Retrieved 2020-04-08.
  15. ^ a b "Initial TCN Coalition commit · TCNCoalition/TCN@1b68b92". GitHub. Retrieved 2020-04-18.
  16. ^ "Covid Watch open source iOS TCN app". Github. 2020-03-17. Retrieved 2020-03-17.
  17. ^ "Covid Watch iOS G/A EN Github Repo". Github. 2020-06-02. Retrieved 2020-06-02.
  18. ^ "Covid Watch Github Repo". Github. 2020-03-07. Retrieved 2020-03-07.
  19. ^ a b Jason Bay, Joel Kek, Alvin Tan, Chai Sheng Hau, Lai Yongquan, Janice Tan, Tang Anh Quy. "BlueTrace: A privacy-preserving protocol for community-driven contact tracing across borders" (PDF). Government Technology Agency. Retrieved 2020-04-12.{{cite web}}: CS1 maint: multiple names: authors list (link)
  20. ^ a b "Is Apple and Google's Covid-19 Contact Tracing a Privacy Risk?". Wired. ISSN 1059-1028. Retrieved 2020-04-18.
  21. ^ "ZCash Privacy Preserving Contact Tracing App on Blockchain the Temporary Contact Number TCN Coalition". Cryptocurrency News - TCAT. 2020-04-12. Retrieved 2020-04-18.
  22. ^ TCNCoalition/TCN, TCN Coalition, 2020-04-18, retrieved 2020-04-18
  23. ^ "The PACT protocol specification" (PDF). PACT MIT. Retrieved 2020-04-23.
  24. ^ "Aisshwarya Tiwar: COVID-19: Zcash (ZEC) and TCN Developing Privacy-Preserving Contact Tracing App | IoT Council". www.theinternetofthings.eu. Archived from the original on 2020-05-14. Retrieved 2020-04-19.
  25. ^ Nabben, Kelsie (2020-04-14). Trustless Approaches to Digital Infrastructure in the Crisis of COVID-19.
  26. ^ Lorenz Cuno Klopfenstein; Saverio Delpriori; Gian Marco Di Francesco; Riccardo Maldini; Brendan Dominic Paolini; Alessandro Bogliolo (2020). Digital Ariadne: Citizen Empowerment for Epidemic Control. arXiv:2004.07717. Bibcode:2020arXiv200407717C.
  27. ^ "Stanford researchers help develop privacy-focused coronavirus alert app". techxplore.com. Retrieved 2020-04-19.
  28. ^ "Will Smartphones Help Us Keep COVID-19 Under Control?". www.news.gatech.edu. Retrieved 2020-04-20.
  29. ^ "Singapore launches TraceTogether mobile app to boost COVID-19 contact tracing efforts". CNA. Archived from the original on 2020-03-20. Retrieved 2020-04-20.
  30. ^ "COVID-19 Apps and Websites - The "Pan-European Privacy Preserving Proximity Tracing Initiative" and Guidance by Supervisory Authorities". Inside Privacy. 2020-04-02. Retrieved 2020-04-20.
  31. ^ Valence, Henry de (6 April 2020). "Private Contact Tracing Protocols Compared: DP-3T and CEN". The Zcash Foundation. Retrieved 2020-04-22.
  32. ^ "ZCash Privacy Preserving Contact Tracing App on Blockchain the Temporary Contact Number TCN Coalition". Cryptocurrency News - TCAT. 2020-04-12. Retrieved 2020-04-19.
  33. ^ "Demonstrating 15 contact tracing and other tools built to mitigate the impact of COVID-19". TechCrunch. 5 June 2020. Retrieved 2020-10-31.[permanent dead link]
  34. ^ "Apple and Google partner on Covid-19 contact tracing technology | Hacker News". news.ycombinator.com. Retrieved 2020-04-20.
  35. ^ Cite error: The named reference :1 was invoked but never defined (see the help page).
  36. ^ "Contact Tracing in the Real World | Light Blue Touchpaper". 12 April 2020. Retrieved 2020-04-20.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search